Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 904, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291037

RESUMEN

Mast cells localize to mucosal tissues and contribute to innate immune defense against infection. How mast cells sense, differentiate between, and respond to bacterial pathogens remains a topic of ongoing debate. Using the prototype enteropathogen Salmonella Typhimurium (S.Tm) and other related enterobacteria, here we show that mast cells can regulate their cytokine secretion response to distinguish between extracellular and invasive bacterial infection. Tissue-invasive S.Tm and mast cells colocalize in the mouse gut during acute Salmonella infection. Toll-like Receptor 4 (TLR4) sensing of extracellular S.Tm, or pure lipopolysaccharide, causes a modest induction of cytokine transcripts and proteins, including IL-6, IL-13, and TNF. By contrast, type-III-secretion-system-1 (TTSS-1)-dependent S.Tm invasion of both mouse and human mast cells triggers rapid and potent inflammatory gene expression and >100-fold elevated cytokine secretion. The S.Tm TTSS-1 effectors SopB, SopE, and SopE2 here elicit a second activation signal, including Akt phosphorylation downstream of effector translocation, which combines with TLR activation to drive the full-blown mast cell response. Supernatants from S.Tm-infected mast cells boost macrophage survival and maturation from bone-marrow progenitors. Taken together, this study shows that mast cells can differentiate between extracellular and host-cell invasive enterobacteria via a two-step activation mechanism and tune their inflammatory output accordingly.


Asunto(s)
Infecciones por Enterobacteriaceae , Infecciones por Salmonella , Ratones , Animales , Humanos , Mastocitos , Infecciones por Salmonella/microbiología , Salmonella typhimurium/genética , Citocinas/metabolismo
2.
Microbiol Spectr ; 12(1): e0278123, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38019016

RESUMEN

IMPORTANCE: Unveiling gene co-expression networks in bacterial pathogens has the potential for gaining insights into their adaptive strategies within the host environment. Here, we developed Co-PATHOgenex, an interactive and user-friendly web application that enables users to construct networks from gene co-expressions using custom-defined thresholds (https://avicanlab.shinyapps.io/copathogenex/). The incorporated search functions and visualizations within the tool simplify the usage and facilitate the interpretation of the analysis output. Co-PATHOgenex also includes stress stimulons for various bacterial species, which can help identify gene products not previously associated with a particular stress condition.


Asunto(s)
Proteínas , Programas Informáticos , Redes Reguladoras de Genes , Bacterias/genética , ARN
3.
Front Microbiol ; 12: 706846, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34408737

RESUMEN

The treatment of invasive Escherichia coli infections is a challenge because of the emergence and rapid spread of multidrug resistant strains. Particular problems are those strains that produce extended spectrum ß-lactamases (ESBL's). Although the global characterization of these enzymes is advanced, knowledge of their molecular basis among clinical E. coli isolates in Ethiopia is extremely limited. This study intends to address this knowledge gap. The study combines antimicrobial resistance profiling and molecular epidemiology of ESBL genes among 204 E. coli clinical isolates collected from patient urine, blood, and pus at four geographically distinct health facilities in Ethiopia. All isolates exhibited multidrug resistance, with extensive resistance to ampicillin and first to fourth line generation cephalosporins and sulfamethoxazole-trimethoprim and ciprofloxacin. Extended spectrum ß-lactamase genes were detected in 189 strains, and all but one were positive for CTX-Ms ß-lactamases. Genes encoding for the group-1 CTX-Ms enzymes were most prolific, and CTX-M-15 was the most common ESBL identified. Group-9 CTX-Ms including CTX-M-14 and CTX-27 were detected only in 12 isolates and SHV ESBL types were identified in just 8 isolates. Bacterial typing revealed a high amount of strains associated with the B2 phylogenetic group. Crucially, the international high risk clones ST131 and ST410 were among the sequence types identified. This first time study revealed a high prevalence of CTX-M type ESBL's circulating among E. coli clinical isolates in Ethiopia. Critically, they are associated with multidrug resistance phenotypes and high-risk clones first characterized in other parts of the world.

4.
Nat Commun ; 12(1): 3282, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-34078900

RESUMEN

Bacterial processes necessary for adaption to stressful host environments are potential targets for new antimicrobials. Here, we report large-scale transcriptomic analyses of 32 human bacterial pathogens grown under 11 stress conditions mimicking human host environments. The potential relevance of the in vitro stress conditions and responses is supported by comparisons with available in vivo transcriptomes of clinically important pathogens. Calculation of a probability score enables comparative cross-microbial analyses of the stress responses, revealing common and unique regulatory responses to different stresses, as well as overlapping processes participating in different stress responses. We identify conserved and species-specific 'universal stress responders', that is, genes showing altered expression in multiple stress conditions. Non-coding RNAs are involved in a substantial proportion of the responses. The data are collected in a freely available, interactive online resource (PATHOgenex).


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Bacterias Gramnegativas/genética , Bacterias Grampositivas/genética , ARN Bacteriano/genética , Estrés Fisiológico/genética , Transcriptoma , Adaptación Fisiológica/genética , Atlas como Asunto , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Genes Bacterianos , Bacterias Gramnegativas/clasificación , Bacterias Gramnegativas/metabolismo , Bacterias Gramnegativas/patogenicidad , Bacterias Grampositivas/clasificación , Bacterias Grampositivas/metabolismo , Bacterias Grampositivas/patogenicidad , Interacciones Microbiota-Huesped/genética , Humanos , Internet , Microbiota/genética , Filogenia , ARN Bacteriano/metabolismo
5.
Infect Immun ; 89(4)2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33495272

RESUMEN

Pathogenic Yersinia spp. depend on the activity of a potent virulence plasmid-encoded ysc/yop type 3 secretion system (T3SS) to colonize hosts and cause disease. It was recently shown that Yersinia pseudotuberculosis upregulates the virulence plasmid copy number (PCN) during infection and that the resulting elevated gene dose of plasmid-encoded T3SS genes is essential for virulence. When and how this novel regulatory mechanism is deployed and regulates the replication of the virulence plasmid during infection is unknown. In the present study, we applied droplet digital PCR (ddPCR) to investigate the dynamics of Y. pseudotuberculosis virulence PCN variations and growth rates in infected mouse organs. We demonstrated that both PCN and growth varied in different tissues and over time throughout the course of infection, indicating that the bacteria adapted to discrete microenvironments during infection. The PCN was highest in Peyer's patches and cecum during the clonal invasive phase of the infection, while the highest growth rates were found in the draining mesenteric lymph nodes. In deeper, systemic organs, the PCN was lower and more modest growth rates were recorded. Our study indicates that increased gene dosage of the plasmid-encoded T3SS genes is most important early in the infection during invasion of the host. The described ddPCR approach will greatly simplify analyses of PCN, growth dynamics, and bacterial loads in infected tissues and will be readily applicable to other infection models.


Asunto(s)
Carga Bacteriana , Variaciones en el Número de Copia de ADN , Plásmidos/genética , Infecciones por Yersinia pseudotuberculosis/microbiología , Yersinia pseudotuberculosis/fisiología , Animales , Proteínas Bacterianas/genética , Modelos Animales de Enfermedad , Femenino , Ratones , Especificidad de Órganos , Reacción en Cadena en Tiempo Real de la Polimerasa , Virulencia , Factores de Virulencia/genética , Infecciones por Yersinia pseudotuberculosis/diagnóstico
6.
Bioinformatics ; 37(1): 126-128, 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33367516

RESUMEN

SUMMARY: Since its introduction, RNA-Seq technology has been used extensively in studies of pathogenic bacteria to identify and quantify differences in gene expression across multiple samples from bacteria exposed to different conditions. With some exceptions, tools for studying gene expression, determination of differential gene expression, downstream pathway analysis and normalization of data collected in extreme biological conditions is still lacking. Here, we describe ProkSeq, a user-friendly, fully automated RNA-Seq data analysis pipeline designed for prokaryotes. ProkSeq provides a wide variety of options for analysing differential expression, normalizing expression data and visualizing data and results. AVAILABILITY AND IMPLEMENTATION: ProkSeq is implemented in Python and is published under the MIT source license. The pipeline is available as a Docker container https://hub.docker.com/repository/docker/snandids/prokseq-v2.0, or can be used through Anaconda: https://anaconda.org/snandiDS/prokseq. The code is available on Github: https://github.com/snandiDS/prokseq and a detailed user documentation, including a manual and tutorial can be found at https://prokseqV20.readthedocs.io. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

7.
Mol Oncol ; 15(4): 968-986, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33275817

RESUMEN

Selective ERα modulator, tamoxifen, is well tolerated in a heavily pretreated castration-resistant prostate cancer (PCa) patient cohort. However, its targeted gene network and whether expression of intratumor ERα due to androgen deprivation therapy (ADT) may play a role in PCa progression is unknown. In this study, we examined the inhibitory effect of tamoxifen on castration-resistant PCa in vitro and in vivo. We found that tamoxifen is a potent compound that induced a high degree of apoptosis and significantly suppressed growth of xenograft tumors in mice, at a degree comparable to ISA-2011B, an inhibitor of PIP5K1α that acts upstream of PI3K/AKT survival signaling pathway. Moreover, depletion of tumor-associated macrophages using clodronate in combination with tamoxifen increased inhibitory effect of tamoxifen on aggressive prostate tumors. We showed that both tamoxifen and ISA-2011B exert their on-target effects on prostate cancer cells by targeting cyclin D1 and PIP5K1α/AKT network and the interlinked estrogen signaling. Combination treatment using tamoxifen together with ISA-2011B resulted in tumor regression and had superior inhibitory effect compared with that of tamoxifen or ISA-2011B alone. We have identified sets of genes that are specifically targeted by tamoxifen, ISA-2011B or combination of both agents by RNA-seq. We discovered that alterations in unique gene signatures, in particular estrogen-related marker genes are associated with poor patient disease-free survival. We further showed that ERα interacted with PIP5K1α through formation of protein complexes in the nucleus, suggesting a functional link. Our finding is the first to suggest a new therapeutic potential to inhibit or utilize the mechanisms related to ERα, PIP5K1α/AKT network, and MMP9/VEGF signaling axis, providing a strategy to treat castration-resistant ER-positive subtype of prostate cancer tumors with metastatic potential.


Asunto(s)
Dicetopiperazinas/uso terapéutico , Receptor alfa de Estrógeno/antagonistas & inhibidores , Indoles/uso terapéutico , Isoquinolinas/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Tamoxifeno/uso terapéutico , Animales , Apoptosis , Humanos , Masculino , Ratones , Ratones Desnudos , Células PC-3 , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt , RNA-Seq , Ensayos Antitumor por Modelo de Xenoinjerto
8.
mSystems ; 5(6)2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33172972

RESUMEN

RpoN, an alternative sigma factor commonly known as σ54, is implicated in persistent stages of Yersinia pseudotuberculosis infections in which genes associated with this regulator are upregulated. We here combined phenotypic and genomic assays to provide insight into its role and function in this pathogen. RpoN was found essential for Y. pseudotuberculosis virulence in mice, and in vitro functional assays showed that it controls biofilm formation and motility. Mapping genome-wide associations of Y. pseudotuberculosis RpoN using chromatin immunoprecipitation coupled with next-generation sequencing identified an RpoN binding motif located at 103 inter- and intragenic sites on both sense and antisense strands. Deletion of rpoN had a large impact on gene expression, including downregulation of genes encoding proteins involved in flagellar assembly, chemotaxis, and quorum sensing. There were also clear indications of cross talk with other sigma factors, together with indirect effects due to altered expression of other regulators. Matching differential gene expression with locations of the binding sites implicated around 130 genes or operons potentially activated or repressed by RpoN. Mutagenesis of selected intergenic binding sites confirmed both positive and negative regulatory effects of RpoN binding. Corresponding mutations of intragenic sense sites had less impact on associated gene expression. Surprisingly, mutating intragenic sites on the antisense strand commonly reduced expression of genes carried by the corresponding sense strand.IMPORTANCE The alternative sigma factor RpoN (σ54), which is widely distributed in eubacteria, has been implicated in controlling gene expression of importance for numerous functions including virulence. Proper responses to host environments are crucial for bacteria to establish infection, and regulatory mechanisms involved are therefore of high interest for development of future therapeutics. Little is known about the function of RpoN in the intestinal pathogen Y. pseudotuberculosis, and we therefore investigated its regulatory role in this pathogen. This regulator was indeed found to be critical for establishment of infection in mice, likely involving its requirement for motility and biofilm formation. The RpoN regulon involved both activating and suppressive effects on gene expression which could be confirmed with mutagenesis of identified binding sites. This is the first study of its kind of RpoN in Y. pseudotuberculosis, revealing complex regulation of gene expression involving both productive and silent effects of its binding to DNA, providing important information about RpoN regulation in enterobacteria.

9.
J Proteomics ; 195: 33-40, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30641234

RESUMEN

Campylobacter jejuni is the major cause of bacterial gastroenteritis in humans. In contrast, colonization in avian hosts is asymptomatic. Body temperature differs between human (37 °C) and avian (42 °C) hosts, and bacterial growth in 37 °C is therefore a potential cue for higher virulence properties during human infection. The proteome of the bacteria was previously shown to be altered by temperature. Here we investigated whether temperature has an effect on the C. jejuni outer membrane vesicle (OMV) proteome, as OMVs are considered to be bacterial vehicles for protein delivery and might play a role during infection. OMVs isolated from C. jejuni strain 81-176 grown at 37 °C and 42 °C were analyzed by LC-ESI-MS/MS. 181 proteins were detected in both sample groups, one protein was exclusively present, and three were absent in OMVs from 37 °C. Of the 181 proteins, 59 were differentially expressed; 30 proteins were detected with higher abundance, and 29 proteins with lower abundance at 37 °C. Among the more highly abundant proteins, significantly more proteins were predicted to be associated with virulence. These data show that temperature has an impact on the property of the OMVs, and this might affect the outcome of colonization/infection by C. jejuni in different hosts. SIGNIFICANCE: While C. jejuni is considered as a commensal bacterium in avian hosts, it causes symptomatic infection in humans. As the host body temperature is one differentiating factor, the growth temperature can potentially affect the virulence properties of the bacteria, but also OMVs that are released during growth. By using a proteomic approach, in this study, we observed that the protein content of OMVs isolated from C. jejuni is affected by growth temperature and that more proteins related to virulence are associated with OMVs at 37°C growth temperature. This property indicates that C. jejuni OMVs have a potential role for the outcome of human infection.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/biosíntesis , Temperatura Corporal , Campylobacter jejuni , Factores de Virulencia/biosíntesis , Campylobacter jejuni/crecimiento & desarrollo , Campylobacter jejuni/patogenicidad , Humanos
10.
Sci Rep ; 8(1): 16996, 2018 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-30451931

RESUMEN

Campylobacter jejuni is a prevalent human pathogen and a major cause of bacterial gastroenteritis in the world. In humans, C. jejuni colonizes the intestinal tract and its tolerance to bile is crucial for bacteria to survive and establish infection. C. jejuni produces outer membrane vesicles (OMVs) which have been suggested to be involved in virulence. In this study, the proteome composition of C. jejuni OMVs in response to low concentration of bile was investigated. We showed that exposure of C. jejuni to low concentrations of bile, similar to the concentration in cecum, induced significant changes in the protein profile of OMVs released during growth without affecting the protein profile of the bacteria. This suggests that bile influences a selective packing of the OMVs after bacterial exposure to low bile. A low concentration of bile was found to increase bacterial adhesion to intestinal epithelial cells, likely by an enhanced hydrophobicity of the cell membrane following exposure to bile. The increased bacterial adhesiveness was not associated with increased invasion, instead bile exposure decreased C. jejuni invasion. OMVs released from bacteria upon exposure to low bile showed to increase both adhesion and invasion of non-bile-exposed bacteria into intestinal epithelial cells. These findings suggest that C. jejuni in environments with low concentrations of bile produce OMVs that facilitates colonization of the bacteria, and this could potentially contribute to virulence of C. jejuni in the gut.


Asunto(s)
Adhesión Bacteriana , Ácidos y Sales Biliares/farmacología , Bilis/química , Infecciones por Campylobacter/metabolismo , Campylobacter jejuni/metabolismo , Células Epiteliales/metabolismo , Proteoma/análisis , Infecciones por Campylobacter/tratamiento farmacológico , Infecciones por Campylobacter/microbiología , Campylobacter jejuni/efectos de los fármacos , Campylobacter jejuni/crecimiento & desarrollo , Células Cultivadas , Células Epiteliales/efectos de los fármacos , Humanos , Intestinos/efectos de los fármacos , Intestinos/fisiología , Virulencia , Factores de Virulencia/metabolismo
12.
Artículo en Inglés | MEDLINE | ID: mdl-27995096

RESUMEN

Type III secretion systems (T3SS) are dedicated to targeting anti-host effector proteins into the cytosol of the host cell to promote bacterial infection. Delivery of the effectors requires three specific translocator proteins, of which the hydrophilic translocator, LcrV, is located at the tip of the T3SS needle and is believed to facilitate insertion of the two hydrophobic translocators into the host cell membrane. Here we used Yersinia as a model to study the role of LcrV in T3SS mediated intracellular effector targeting. Intriguingly, we identified N-terminal lcrV mutants that, similar to the wild-type protein, efficiently promoted expression, secretion and intracellular levels of Yop effectors, yet they were impaired in their ability to inhibit phagocytosis by J774 cells. In line with this, the YopH mediated dephosphorylation of Focal Adhesion Kinase early after infection was compromised when compared to the wild type strain. This suggests that the mutants are unable to promote efficient delivery of effectors to their molecular targets inside the host cell upon host cell contact. The significance of this was borne out by the fact that the mutants were highly attenuated for virulence in the systemic mouse infection model. Our study provides both novel and significant findings that establish a role for LcrV in early targeting of effectors in the host cell.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Factores de Virulencia/metabolismo , Yersinia pseudotuberculosis/patogenicidad , Animales , Macrófagos , Ratones , Fagocitosis , Transporte de Proteínas , Virulencia
13.
Infect Immun ; 84(12): 3369-3378, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27620724

RESUMEN

Neutrophils are essential components of immunity and are rapidly recruited to infected or injured tissue. Upon their activation, neutrophils release granules to the cell's exterior, through a process called degranulation. These granules contain proteins with antimicrobial properties that help combat infection. The enteropathogenic bacterium Yersinia pseudotuberculosis successfully persists as an extracellular bacterium during infection by virtue of its translocation of virulence effectors (Yersinia outer proteins [Yops]) that act in the cytosol of host immune cells to subvert phagocytosis and proinflammatory responses. Here, we investigated the effect of Y. pseudotuberculosis on neutrophil degranulation upon cell contact. We found that virulent Y. pseudotuberculosis was able to prevent secondary granule release. The blocking effect was general, as the release of primary and tertiary granules was also reduced. Degranulation of secondary granules was also blocked in primed neutrophils, suggesting that this mechanism could be an important element of immune evasion. Further, wild-type bacteria conferred a transient block on neutrophils that prevented their degranulation upon contact with plasmid-cured, avirulent Y. pseudotuberculosis and Escherichia coli Detailed analyses showed that the block was strictly dependent on the cooperative actions of the two antiphagocytic effectors, YopE and YopH, suggesting that the neutrophil target structures constituting signaling molecules needed to initiate both phagocytosis and general degranulation. Thus, via these virulence effectors, Yersinia can impair several mechanisms of the neutrophil's antimicrobial arsenal, which underscores the power of its virulence effector machinery.


Asunto(s)
Degranulación de la Célula , Neutrófilos/fisiología , Yersinia pseudotuberculosis/patogenicidad , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Humanos , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo , Virulencia , Yersinia pseudotuberculosis/fisiología
14.
Immunity ; 45(1): 106-18, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27421701

RESUMEN

The ATM kinase is a central component of the DNA damage repair machinery and redox balance. ATM dysfunction results in the multisystem disease ataxia-telangiectasia (AT). A major cause of mortality in AT is respiratory bacterial infections. Whether ATM deficiency causes innate immune defects that might contribute to bacterial infections is not known. Here we have shown that loss of ATM impairs inflammasome-dependent anti-bacterial innate immunity. Cells from AT patients or Atm(-/-) mice exhibited diminished interleukin-1ß (IL-1ß) production in response to bacteria. In vivo, Atm(-/-) mice were more susceptible to pulmonary S. pneumoniae infection in a manner consistent with inflammasome defects. Our data indicate that such defects were due to oxidative inhibition of inflammasome complex assembly. This study reveals an unanticipated function of reactive oxygen species (ROS) in negative regulation of inflammasomes and proposes a theory for the notable susceptibility of AT patients to pulmonary bacterial infection.


Asunto(s)
Ataxia Telangiectasia/genética , Pulmón/inmunología , Infecciones Neumocócicas/inmunología , Streptococcus pneumoniae/inmunología , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Células Cultivadas , Daño del ADN , Reparación del ADN , Humanos , Inmunidad Innata , Inflamasomas/fisiología , Interleucina-1beta , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
15.
Science ; 353(6298): 492-5, 2016 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-27365311

RESUMEN

Pathogenic bacteria have evolved numerous virulence mechanisms that are essential for establishing infections. The enterobacterium Yersinia uses a type III secretion system (T3SS) encoded by a 70-kilobase, low-copy, IncFII-class virulence plasmid. We report a novel virulence strategy in Y. pseudotuberculosis in which this pathogen up-regulates the plasmid copy number during infection. We found that an increased dose of plasmid-encoded genes is indispensable for virulence and substantially elevates the expression and function of the T3SS. Remarkably, we observed direct, tight coupling between plasmid replication and T3SS function. This regulatory pathway provides a framework for further exploration of the environmental sensing mechanisms of pathogenic bacteria.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Plásmidos/genética , Sistemas de Secreción Tipo III/genética , Factores de Virulencia/genética , Infecciones por Yersinia pseudotuberculosis/microbiología , Yersinia pseudotuberculosis/patogenicidad , Animales , Dosificación de Gen , Humanos , Ratones , Virulencia , Yersinia pseudotuberculosis/genética
16.
PLoS One ; 10(8): e0133298, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26275291

RESUMEN

Microbial pathogens and host immune cells each initiate events following their interaction in an attempt to drive the outcome to their respective advantage. Here we show that the bacterial pathogen Yersinia pseudotuberculosis sustains itself on the surface of a macrophage by forming acidic fluid-accessible compartments that are partially bounded by the host cell plasma membrane. These Yersinia-containing acidic compartments (YACs) are bereft of the early endosomal marker EEA1 and the lysosomal antigen LAMP1 and readily form on primary macrophages as well as macrophage-like cell lines. YAC formation requires the presence of the Yersinia virulence plasmid which encodes a type III secretion system. Unexpectedly, we found that the initial formation of YACs did not require translocation of the type III effectors into the host cell cytosol; however, the duration of YACs was markedly greater in infections using translocation-competent Y. pseudotuberculosis strains as well as strains expressing the effector YopJ. Furthermore, it was in this translocation- and YopJ-dependent phase of infection that the acidic environment was critical for Y. pseudotuberculosis survival during its interaction with macrophages. Our findings indicate that during its extracellular phase of infection Y. pseudotuberculosis initiates and then, by a separate mechanism, stabilizes the formation of a highly intricate structure on the surface of the macrophage that is disengaged from the endocytic pathway.


Asunto(s)
Macrófagos/metabolismo , Macrófagos/microbiología , Yersinia pseudotuberculosis/fisiología , Animales , Línea Celular , Células Cultivadas , Ratones , Infecciones por Yersinia pseudotuberculosis/metabolismo
17.
PLoS Pathog ; 11(1): e1004600, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25590628

RESUMEN

We recently found that Yersinia pseudotuberculosis can be used as a model of persistent bacterial infections. We performed in vivo RNA-seq of bacteria in small cecal tissue biopsies at early and persistent stages of infection to determine strategies associated with persistence. Comprehensive analysis of mixed RNA populations from infected tissues revealed that Y. pseudotuberculosis undergoes transcriptional reprogramming with drastic down-regulation of T3SS virulence genes during persistence when the pathogen resides within the cecum. At the persistent stage, the expression pattern in many respects resembles the pattern seen in vitro at 26oC, with for example, up-regulation of flagellar genes and invA. These findings are expected to have impact on future rationales to identify suitable bacterial targets for new antibiotics. Other genes that are up-regulated during persistence are genes involved in anaerobiosis, chemotaxis, and protection against oxidative and acidic stress, which indicates the influence of different environmental cues. We found that the Crp/CsrA/RovA regulatory cascades influence the pattern of bacterial gene expression during persistence. Furthermore, arcA, fnr, frdA, and wrbA play critical roles in persistence. Our findings suggest a model for the life cycle of this enteropathogen with reprogramming from a virulent to an adapted phenotype capable of persisting and spreading by fecal shedding.


Asunto(s)
Análisis de Secuencia de ARN/métodos , Virulencia/genética , Infecciones por Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/patogenicidad , Animales , Ciego/inmunología , Ciego/microbiología , Ciego/patología , Femenino , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Ratones , Análisis por Micromatrices , Microbiota/inmunología , ARN Bacteriano/genética , Yersinia pseudotuberculosis/inmunología , Infecciones por Yersinia pseudotuberculosis/inmunología , Infecciones por Yersinia pseudotuberculosis/patología
18.
Infect Immun ; 82(8): 3471-82, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24891107

RESUMEN

Yersiniosis is a human disease caused by the bacterium Yersinia pseudotuberculosis or Yersinia enterocolitica. The infection is usually resolved but can lead to postinfectious sequelae, including reactive arthritis and erythema nodosum. The commonly used Yersinia mouse infection model mimics acute infection in humans to some extent but leads to systemic infection and eventual death. Here, we analyzed sublethal infection doses of Y. pseudotuberculosis in mice in real time using bioluminescent imaging and found that infections using these lower doses result in extended periods of asymptomatic infections in a fraction of mice. In a search for the site for bacterial persistence, we found that the cecum was the primary colonization site and was the site where the organism resided during a 115-day infection period. Persistent infection was accompanied by sustained fecal shedding of cultivable bacteria. Cecal patches were identified as the primary site for cecal colonization during persistence. Y. pseudotuberculosis bacteria were present in inflammatory lesions, in localized foci, or as single cells and also in neutrophil exudates in the cecal lumen. The chronically colonized cecum may serve as a reservoir for dissemination of infection to extraintestinal sites, and a chronic inflammatory state may trigger the onset of postinfectious sequelae. This novel mouse model for bacterial persistence in cecum has potential as an investigative tool to unveil a deeper understanding of bacterial adaptation and host immune defense mechanisms during persistent infection.


Asunto(s)
Ciego/microbiología , Infecciones por Yersinia pseudotuberculosis/microbiología , Yersinia pseudotuberculosis/fisiología , Animales , Derrame de Bacterias , Modelos Animales de Enfermedad , Heces/microbiología , Femenino , Mediciones Luminiscentes , Ratones , Imagen de Cuerpo Entero
19.
PLoS One ; 9(1): e87859, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24498214

RESUMEN

Polymorphonuclear leukocytes (PMNs) are essential for the human innate immune defense, limiting expansion of invading microorganisms. PMN turnover is controlled by apoptosis, but the regulating signaling pathways remain elusive, largely due to inherent differences between mice and humans that undermine use of mouse models for understanding human PMN biology. Here, we aim to elucidate signal transduction mediating survival of human peripheral blood PMNs in response to bacteria, such as Yersinia pseudotuberculosis, an enteropathogen that causes the gastro-intestinal disease yersiniosis, as well as Escherichia coli and Staphylococcus aureus. Determinations of cell death reveal that uninfected control cells undergo apoptosis, while PMNs infected with either Gram-positive or -negative bacteria show profoundly increased survival. Infected cells exhibit decreased caspase 3 and 8 activities, increased mitochondrial integrity and are resistant to apoptosis induced by a death receptor ligand. This bacteria-induced response is accompanied by pro-inflammatory cytokine production including interleukin-8 and tumor necrosis factor-α competent to attract additional PMNs. Using agonists and pharmacological inhibitors, we show participation of Toll-like receptor 2 and 4, and interestingly, that protein kinase C (PKC) and phosphatidylcholine-specific phospholipase C (PC-PLC), but not tyrosine kinases or phosphatidylinositol-specific phospholipase C (PI-PLC) are key players in this dual PMN response. Our findings indicate the importance of prolonged PMN survival in response to bacteria, where general signaling pathways ensure complete exploitation of PMN anti-microbial capacity.


Asunto(s)
Infecciones Bacterianas/inmunología , Neutrófilos/inmunología , Proteína Quinasa C/inmunología , Fosfolipasas de Tipo C/inmunología , Animales , Infecciones Bacterianas/enzimología , Infecciones Bacterianas/microbiología , Infecciones Bacterianas/patología , Caspasa 3/inmunología , Caspasa 3/metabolismo , Caspasa 8/inmunología , Caspasa 8/metabolismo , Supervivencia Celular/inmunología , Femenino , Humanos , Interleucina-8/inmunología , Interleucina-8/metabolismo , Masculino , Ratones , Neutrófilos/enzimología , Neutrófilos/microbiología , Neutrófilos/patología , Proteína Quinasa C/metabolismo , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/inmunología , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Fosfolipasas de Tipo C/metabolismo
20.
Infect Immun ; 82(3): 1181-91, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24379291

RESUMEN

The human-pathogenic species of the Gram-negative genus Yersinia preferentially target and inactivate cells of the innate immune defense, suggesting that this is a critical step by which these bacteria avoid elimination and cause disease. In this study, bacterial interactions with dendritic cells, macrophages, and polymorphonuclear neutrophils (PMNs) in intestinal lymphoid tissues during early Yersinia pseudotuberculosis infection were analyzed. Wild-type bacteria were shown to interact mainly with dendritic cells, but not with PMNs, on day 1 postinfection, while avirulent yopH and yopE mutants interacted with PMNs as well as with dendritic cells. To unravel the role of PMNs during the early phase of infection, we depleted mice of PMNs by using an anti-Ly6G antibody, after which we could see more-efficient initial colonization by the wild-type strain as well as by yopH, yopE, and yopK mutants on day 1 postinfection. Dissemination of yopH, yopE, and yopK mutants from the intestinal compartments to mesenteric lymph nodes was faster in PMN-depleted mice than in undepleted mice, emphasizing the importance of effective targeting of PMNs by these Yersinia outer proteins (Yops). In conclusion, escape from interaction with PMNs due to the action of YopH, YopE, and YopK is a key feature of pathogenic Yersinia species that allows colonization and effective dissemination.


Asunto(s)
Neutrófilos/inmunología , Infecciones por Yersinia pseudotuberculosis/inmunología , Yersinia pseudotuberculosis/inmunología , Animales , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/inmunología , Células Dendríticas/inmunología , Células Dendríticas/microbiología , Femenino , Intestinos/inmunología , Intestinos/microbiología , Tejido Linfoide/inmunología , Tejido Linfoide/microbiología , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Ratones Endogámicos BALB C , Mutación/genética , Mutación/inmunología , Neutrófilos/microbiología , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/inmunología , Yersinia pseudotuberculosis/genética , Infecciones por Yersinia pseudotuberculosis/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...